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subject to a set of restrictions called['?)nstra,n\d’
mathematical techniques to model, analyze, g lr
Sol,

problem.
Four main phases of operation research

1- Definition of the Problem:

®What are the decision variables

®What is the objective of the study

®What are the specification of the limitations u
which the modeled system operates.

>- Madel Construction

Translating the real-world problems into mathel

——

models
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® Testing and evaluation of the model, A common method
for testing a validity of a model is to compare its

performance with some past data available for the actual
system.

4- Solution Methodology -
Spman L SR £, gx}/l)_'f,.

o Th ' . C"’}-I.k’n.">
ere are wide verities of existing solution algorithms to
solve mathematical models yet knowing which one to use

might be challenging.

5- Implermenting the Solution © Translating the resulting

=2

mathematical model into a computer code (i.e, CPLEX, C, C++,

etc)
+»Basic Component of the Model

Is the unknow to determined from the solution of a model (
what dose the model seeks to determine).
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2- Objective function ® It is the final result desired to be
achieved by the system. Decision makers normally care
about the“valuefthe-objective function. A cormmor
objective is to minimize the total cost or maxirnize th
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mathematicalfunctions of the systery decision
variables.

Example 1

The admission office at Tech wants to determine how |
many instate and out-ofstate students to accept for next |
fall's entering freshman class. Tuition for in-state studentis \\
47,600 per year while out-of-state tuition is 22,500 per |
year. A total of 12,800 in-state and 8,100 out-af-state

freshman have applied for next fall, and Tech does notwa
to accept more than 3,500 students.

Example 1

However, since Tech is a state institution, the s
mandates that it can accept no more than 40% out-of-
students. From past experience, the admissions
knows that 12% of in-state students and 24% of o
state students will drop out during their first year




wants to maximi
i mize total tuitio ile limiti
attrition to 6oo first-year studen‘?s by

Decision variables

@ L o
et x1 = Number of in-state students admitted

@
Let x2 = Number of out-of-state students admitted

Objective FunctionMaximize\

7= $7,600X1 + 22 500X2



Constraints

X1 + X2 <= 3,500
X2/(X1 + X2)<=0.40
0.12X1 + 0.24X2 <=600
X1,X2 >=0

Mathematical Model

Maximize Z = $7,600X1 + 22,500

X2
Subject to

X1+ X2 <=3,500
X2/X1 + X2<=0.40
0.12X1 + 0.24X2 <=600

X1,X2 >=0

1
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‘ Example 2

« The production manager at the Boston Paint
Company is preparing production and inventory

plans for next year.

* The production manager has the following data
concerning the firm.

Quarter Sales Forecast
1 3,000 units
2 1,800
3 2,400
4 3,500

¢ Current inventory level = 300 units.

“ Current employment level = 600 people.

“Production rate last quarter = 2,400 units
units/employee/quarter).

“Inventory carrying cost = $20/unit/quarter
" Hiring cost = $200/employee hired.

“Layoff cost = $200/employee laid off
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® Regular time production cost per unit = $320/unit.
° Additional cost of overtime = $60/unit.

° Desired closing inventory level = 100 units (minimum).

Define the decision variables

X¢= Regular production during Quarter t
O.= Overtime production during Quarter t

lt= Ending inventory in Quartert

H¢= Number hired in Quarter t

Ft= Number fired in Quartert

W; = Number of employees in Quarter t

St = Slack reqular production during Quarter t
T

'Obijective function (Minimize the sum of inventory holding

cost + Hiring & Firing cost + Regular & ovetime production

cost)

4N



Minimize:
20%(ly+ o+ I+ 1) + 200% (Hy + Hy+ Hy+ Hy) + 200%(Fo+ Fo+ Fyy

Fa)
+320%(Xy + X5+ Xg+ X,) +380(04+ O+ O3+ O,)

Subject to:

lo+ Xy+ O;-1,=3,000
li+ Xs+ O;-1,=1,8001, +
X3+ 03_|3= 2,400 |3+ X4+

O,-l,=3,500

I, 0 100
lo=300
W, =600
4 Wi-X,-S,= 0
4W3-X,-5,=0
4W3"X3'53:0

4W4'X4‘S4:



Wo'W1+H1- F1=0W1'W2+ Hz
_F2=0W2—W3+ H3- F3::o
W3-W4+ H4' F4=0




Chapter 2:
Modeling with Linear

Programming & sensitivity
analysisrt
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LINEAR PROGRAMMING (LP)

-In_mathematics, linear Programming (LP) is g3
technique for optimization of 1 linear objective

function, subject to linear equality and linear
inequality constraints.



TWO-VARIABLE LP MODEL

Example 2.1-1 (The Reddy Mikks Company)

jals M1 and
Reddy Mikks produces both interior and exterior paints from two raw materi
M2

Tons of raw material per ton of
A

uailahillh’/ (tons)

.«f‘; Raw material M1 6 \ 24
Raw material M2 1 2 6
Profit per ton ($1000) 5 ! 4

-Daily demand for interior paint cannot exceed that of exterior paint by more
than aton

-Maximum daily demand of interior paintis 2 tons

gl

-Reddy Mikks wants to determine the optimum product mix of interior and
exterior paints that maximizes the total daily profit

Solution:

Let
X1 = tons produced daily of exterior paint

X>= tons produced daily of interior paint Let z

represent the tota| daily profit (in thousands of dollars)

Objective:



Solution:

3 = tons produced daily of exteriorpaint

Let
X

, = tons produced daily of In
tho

X

represent the total daily profit (in

Objective:

1% + 2Xa toNs
terial M1 is 24 tons
6 tons

material M2 per day =
of raw ma

of raw material M2 is

Restrictions:

w material M1)

Usage of raw
daily availability
daily availability

6x: + 4X2 <24 (ra

(raw material M2)

X: + 2Xa _<_6
daily demand of interior (x.) and

_ Difference between
exterior (x;) paints does not exceed 1ton,

SO XZ'X1_<_1

_ Maximum daily demand of interior paintis 2 tonyg
I/



SO Xa <2

- Variables X and %, cannot assume negative values, SO x.> O

' X220

Complete Reddy Mikks model:

Maximize z = gx1 + ¢4x2 (total daily profit)
subject to

6X1 + 4X2 <24 (raw material M) x1 +
2X2 <6 (raw material M2)

X2 - X1 <1x2 <2

X1 >0
X2 316

- Objective and the constraints are all linear functions
in this example.;

Properties of the LP model:

Linearity implies that the LP must satisfy three basic properties:

1) Proportionality:

Contribution of each decision variable in both the objective function and

constraints to be directly proportional to the value of the variable

2) Additivity:

19



- tive function
“Total contribution of all the varizbles in the ObFT gividual
8nd in the constraints to be the direct sum of the

contributions of each variable

Propertjes of the;L[’.ﬂ"'-—o—d—gJi

3) Certainty:
" Allthe objective and constraint coeffice
deterministic (known constants)

- : 1 om aperaY TS

LP coefficients zre average-value approxXme
dis(nbuhcns e the
pns 3M€ o

fs1andard deviations of these cistribute

.,:ppr)’xfn.;‘;Cn 5 ‘35((','.'12-!.‘-'6

Feasible Solutions for Linear Programs



INFEASIBLE SOLUTION
Feasible Solutions for Linear Programs:

* The set of all points that satisfy all the constraints of the modelis

called
(;, ™
" Ve
FEASIBLE SOLUTION PR 2o
Otherwise, the solutionis " - 3 5 v
U,(\‘X’{w 7 9>\ (’{/)
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INFEASIBLE SOLUTION
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Type of feasible points
ne v ??Hm ) \
_ Interior point: satisfies all constraint but non with equality.
\{7 y ()\ M\B

Pl /4),9 /ﬁ Boundary points: satisfies all constraints, at least one with equal

¢ pJJ
|
< 0/6) L Extreme point: satisfies all constraints, two with equality.
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*

Extreme point
* Boundary point
* Interior point

Infeasible
3 <~ a

X1

OEtimal Soluﬁion

. If a linear programming has a
unique optimal solution , then one

of the extreme point s optimal.

raphical <olution procedure

_gymmeryof g
ind the feasible point

1- graph constraintto fir

NN



\~*
>- set objective function equal to an arbitrary value so thy, "
passes through the feasible region.

3- move the objective function line parallel to itself until it tOUChg
the last point of the feasible region .

4- solve for X1 and X2 by solving the two equation that interg,ec,tt
determine this point

5- substitute these value into objective function to determjy, i
optimal solution.

16

Complete Reddy Mikks model:

Maximize z = 5x1 + 4x2 (total daily profit)

subject to
6x1 + 4x2 <24 (raw material M1)

X1 + 2x2 <6 (raw material M2)
X2 - X1 <1

X2 2 X1>0

5.
>0

2.2.1 Solution of a Maximization model




Example 2.2-1 (Reddy Mikks model)

1) Determination of the feasible solution space:

- Find the coordinates for all the 6 equations of the
restrictions (only take the equality sign)

6Xa + 4X2 <24

O

X1 + 2X2 5_61)(2‘)(1 _<__b
2 O
()

2
D

X: <2
| 4
{ X;> 0
5
X. > 0 -

ions | ity signs
Change all equations 10 equality 519

6)(; + L}’\"‘: 24

25



Xi + 2Xa =62X2"X1=13g

=2.4X1=0 5 X, =

6

0 0 09e0

- Plot graphsof xi= 0 andx: = o- Plc

= ™ W Lo\n oo
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coordinates of the equation
Assumexi1=0"> X2 =6
f Assume X2=0"> x1=¢

.J"H"-‘Ll

D T S -~
e e
=

- Plot graph of x1 + 2x2 = 6 by using the coordinates of the
equation

Assume x1 =0 =®» x2 =3 Assume x2=0 X1 =6
_ Plot graph of x: - x» =1 by using the coordinates of the

equation (x1=-1, x2=0) and

=

(x1=0,X2=1)

Plot graph of x2 = 2byusingthecoordinatesofthe equati
= ot gra 2 =
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Fiaore 2.1
Peasible spuve oo the Reddy Mikks model.

_ Now include the inequality of all the 6 equations

- Inequality divides the (x, x2) plane into two_half spaces, one

on each side of the graphed line

Only one of these two halves satisfies the inequality

- To determine the correct side, choose (0,0) as a reference

point
- If (0,0) coordinate satisfies the inequality, then the side in

which (0,0) coordinate lies is the feasible half-space , otherwise

the otherside is



- If the graph line happens to pass through the origin (0,0) ,
then any other point can be used to find the feasible half-space
Step 2:

2) Determination of the optimum solution from
among all the feasible points in the solution space:

- After finding out all the feasible half-spaces

of all the 6 equations, feasible space is
obtained by the line segments joining all the
corner points A, B, C,D ,Eand F

- Any point within or on the boundary of the
solution space ABCDEF is feasible as it satisfies

all
the constraints
- Feasible space ABCDEF consists of infinite
number of feasible points

= Tofind optimum solution

| N e
‘II:t S o= 5L SR

increases

= Assign random incr
§X1+ 4X2 =10

r - =
X1 = 1C
SAL T ..')\~ -5

2Q



“Thus in this way the optimum solution occurs at corner point C which is the

point in the solution space
= Any further increase in z that is beyond corner point C will put p
outside the boundaries of ABCDEF feasible space

oints

- Valves of X» and X: associated with optimum corner point C are

determined by solving the equations and

6Xs + 4Xa= 24 X 4 2% =06

= XazzandXi=1.5 with z =5X34+4X05= 21

- So daily product mix of 3 tons of exterior paint and 1.5 tons of interior
paint produces the daily profit of $21,000.

Manimize T - Sy 4 dx)

[

Optimum: xy Xons
AR DAY TY1IT
LR REEY

Figure 2.2

Oprimum <elud r
pimum selution of the B
B e i ddy 1SS
[IX ‘\\h\.) Mk twdel,
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= Important cha
racteristic of
thatitisalw of the optimum LP ion |
o aysassociated witha corner point of soluuo;? ”
pace (Where two lines intersect) Peinkalihesoiution

- This is even t '
rue if the ob .
parallel to a constraint jective function happens to be

- Forexampleif th
e objecti
Z = 6X:+ 4X, (RAIVR InEtion g

- The abov i
e equation is parallel to constraint of equation

- Sooptimumo
ccurs at either corner poi
ointBorc i
C when parallel P orner point

_ Actually any point on the line segment BC will be an alternative

optimum

f _ _ Line segment BCis totally defined by the corner points B and C
i - Corner points (Xa,X2) Z = 600 Xa+ 400 X2
i A (0, 40) 16000 B

(12,4) 8800

C (22,0) 13200

s of bottles (Coca-cola, Fanta,

_ In 12 days all the three type
ant at Coimbatore

Thumps-up) are produced by pl

_ In 4 days all the three Types of bottles (Coca-cola, Fanta,

8 =



humps-up) are produced by plant at Chennai
m minimum production cost is 88oo units to meet the
- nsfarket demand of all the three types of bottles (Coca-cola,

Fanta, |
Thumps-up) to be produced in April

- Since optimum LP solution is always associated with a corner point

of the solution space, so optimum solution can be found by

enumerating all the corner points as below:-

Corner point 0.9, 8 B —
A (olo) (0]
]
I
B (4,0) 20
‘j C (3,1.5) 21 (optimum solution)
D (212) 18
E (11 2) 13
& (011) 4

- As number of constraints and variables increases . the number of com
points also increases




2.2.2 Solution of a Minimization model

Example 2.2-3

- Firm or industry has two bottling plants = One
plant located at Coimbatore and other plant
located at Chennai

- Each plant produces three types of drinks Coca-

cola, Fanta and Thumps-up




et

Number of bottles produced per day by plant at

— Coimbatore___Chennai._

Coca-cola 15,000 15,000
Fanta 30,000 10,000
Thumps:-up 20,000 __£0,000
Cost per day 6oo 400
(in any unit)

-Market survey indicates that during the month of April there will b::n?i
demand of 200,000 bottles of Coca-cola , 400,000 bottles of Fanta,
440,000 bottles ofThump.s-up

Solution:

- For how many days each plant be run in April so as to minimize the
production cost, while still meeting the market demand?

Let Xi -numberof days to produce all the three types of bottles by

plant
Objective:
/ at Coimbatore X2 = number of days to produce all the three
.. typesofbottles by plant  at Chennai
Constraint:

Minimize z =600 X1 + 400 X2

15,000 X1+ 15,000 X22> 200,000




e

30,000 X1+ 10,000 Xa 3 400,000

20,000 X1+ 50,000 X2 > 440,000

W) 09 O

Fagible gpace

25
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Simplex Method

@
Most real-world LP problems have more than two

decision variables.

@ . 3
Graphical solution procedure can not be used to

solve such problems.

® A simplex method can be used to find the optimal

instead .
solution

Simplex Method

“ The simplex method provides an algorithm which is
fundamental theorem of linear

based on the

programming. This states that “the optimal solution to
a linear programming problemalways 0CCUrS
3t one of the corner points of the feasible solution

space.”



Simplex Method

It consists of:

® (i) Having a trial basic feasible solution to constraip,

equation,

° (ii) Testing whether it is an optimal solution

 (iii) Improving the first trial solution by repeating tt
process till an optimal solution is obtained

Computational Procedure of Simplex Method:

Convert each inequality constraint in an LP formulatic

into an equation .

“replace <= constraints to equations by adding sla

variables.

“Example



®6Xx1+4X2< 24 can be written as

| ® 6X1+4X2 +S1=24, S1=0
Computational Procedure of Simplex Method:

®Replace = constraints to equations by adding surplus

variables.

“ Example:

“x1+x2=800 can be written as

“x1+x2-R2=800, R2=0
Computational Procedure of Simplex Method:

“Replace = constraints to equations by adding surplus

variables.

“ Example:

“y1+x2>800 can be written as

39




*x14x2-52=800, 5220

® X1+4x2=800452
Optimality Conditions

® The entering variable in a maximization ('mimmuzation
problem is the non basic variable having the mo.
negative |
( positive) coefficient in the objective function

“ The optimal solution is reached at a given iteration where;
z-row coefficients of the nonbasic variables are nonnegati,
( nonpositive)

' Z-5X1-4X2
Feasibility Conditions

* The For both maximization and minimization problems, t
leaving variable is the basic variab|e associated with



smallest nonnegative ratio ( with strictly positive
nominator)

%‘""ifw Xa X2

°X1---5 6=24=> 24/6=4

¢ ©52----X1+x2=5 =>» 5/1=5

. ; “&  Dises A i W :
'Kg\mé LN “\3“0/’\71\7\,\ A 2 & \)zliiblej ’/: /r \
OO O WL o WO .\ .31 S
e T I e
040’\/00\2 - 9 : Nt
. e T Lesin
M Vo N‘rf/j&) \P("ubm
W 22

Simplex Method

“ Step 1. determine a starting basic feasible solution

Step 2. Select an entering variable using the optimality
conditions. Stop if there is no entering variable; the last
solution is optimal. Else, go to step 3.

Step 3. select leaving variable using the feasibility
conditions.

—

41
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= o ; :
F Step 4. Determine the new basic solution by using "

] a \ - .
| PPropriate Gauss-Jordan computation: Go to step 5

Simplex Method

¢

Q
Gauss-Jordan row operation:

1-  Pivotrow a- replace the leaving variable in the basj,

column with the entering variablé

b- new pivot row = Current pivot row / pivOt element

»- All other rows including z

New row = current row — pivot column coefficient

* new pivotr

Example: Reddy Mikks model

subject to:

Maximize z = 5X1+ 4X2 (total daily profit)
6x1 + 4x2 <24 (raw material M1)

x1 + 2x2 <6 (raw material M2)



X2 -X1 €41
X2 <2 x13

X2 >0

replace <= constraints to equations by adding slack variables and add them to the objective function .
Maximize z = 5x1 + 4x2+ 0S;+05,+05;+0S,
Subject to:
6x1 + 4x2 451 = 24
X1 +2X2 +S, =6
X2 - X1+4S3 =1
X2 +S5,= 2
X1, %2,51,5,,53 54> 0
the variables S, S, Szand S,
Are the slacks associated with the respective constraints. Next, we write the objective equation as
Z-5x1-4x2-0=0

AN
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¥

52
53

S

Note that,
- X1 and x2 are Non basic variables ( zero)

- $1,52,53 and S are basic variables ( non zero)

| Itteration#a

The starting simplex tableau is

¥

3]

L3}

51

Sy

il

NS ety
aq
15 4
E] Ll
1 A
¥ [nfinity

Itteration#1

“ The entering variable corresponds
coefficient in the objective function.

to the most negative

" Inthis example x1 has the most negative coefficient ( -r)




Itteration#1 o .
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[tteration#1

Zawill entry the hase instead of Sa

Ihe swapping process is based on Gauss-Jordan row operations. Itisidentify the
entering variable coluran as the pivot colurnn and the leaving variable raw as the pivot
rovs, The intersection hetween the pivot column and the pivot raw is called the pivot

clerent .
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'ttération#l

Next

1. "
divide the pivot row by the pivot element. with the entering variable.,
w nw !
2= replace the leaving variable In the basic ¢ colum
“5X1-4X2=0
x1+2/3x2+1/551 3 s3
x1 x2 s1 so 0 g
Z 5 -4 0 0 0 0
( 6/6=1 aje=2/3 /0
: y, J,W ﬂD
s
,D 7
Ep)
o v
60‘
2 - &
DY ' z :
oS Bt 9 oz 7 e
?,\n S SO A 3 !
i D:J::‘\nb‘“ \-\ 3 )»W P S T
;s orothernon plv rows N e Jsis G
plo s P
’ (15 plvot column coefﬁcnent)*(new pivotrow) 7 -
-5X1-4X2=0
(X2+2/3x2+1/651=4)*-5 (é"" uss ,_/\Y@Q\,owx emenali
-5X1-4X2=0

-5x1-10/3x2+5/651=-20

0X1-2/3X2+5/651=20

x1 x2 51 52 s3 s4 RHS ratio
z [ 0 223 5/6 0 0 0 20  Curentzrow - x1row Muitolyg s
x1 1 2/3 16 0 0 o |4 |
S2
53 l _ 1
54
x1 x2 sl $2 53 54 RHS catio
Z ‘ 0 -2/ 5/6 A
i : /S g 0 0 20 Current z rows - x1 rev Ml
x1 1 2/> 1/6 0 0 0 I 4 |
0 1! -1/5 1 o
@ 0 ’ 2 Current s2 ron - - Liow Pl
‘ !
AR
70




The new objective value is z=20..

>

Z= 5X1+4X2+051+052+053+054

New Z = Old z+ (5*4+4*0+0*0+0*2+0%5+0*2)

The new basic solution now is ()(1:1“ 52=2, 53=5 ana 54:2)

-2/3 5’/15 0'2 0“ 4 nHS tatlo RPN

23 1/6 0 > g 20 Current 2 row < %1 (oW

12 ' - e 0 ! ; Current 82 rov/ - 21 oW Multiphy by
s e 4 - o 5 Current 83 10w« xd rol Muftiply by -1

| |
x2 sl 52 s) " RIS nid '
i - g < 0 20 Current z o/ - 411V Multiphy 1 -5
2 3 2 g 0 s | 6, )
4 £y ! 0 0 2 2/ VA current s2 row - xLrov Mutiiply by 1 [
a4 16 9 1 0 5 Current s3 rov/ - s170% puttiphy by -1
° b ; o 0 1 2 "Current 44 rav - x1 0¥ Mottiphy by O

RHS




[tteration#2

poivt column

x1 S e S ! 2 3 4 AHS 1atio
L4 0o 31! s/6 0 0 0 20 I
Lo ] 1 ENERJ3ER  1/6 0 [} 0 [ & ) 6 i s
O [T L e 1y W RS NI A S s A1/ minimum (picrt row)]
(i ‘2/;.-'} 16 o 1 0 5 3
o [ R 0 0 1 2 2
x1 x2 s1 52 s3 sd RHS ratlo
9 o 3/4 172 Q 9 21 Currentz row - x2 rovs Multiply by -2/3
1 0 1/4 -1/2 [{] 0 3 Current x1 rovs - x2 rovs Multiply by 2/3
[} 1 -1/8 3/4 0 (o] 11/2
Q 0 3/8 -11/4 1 0.2 1/2 Currents3 row - x2 rovs Multiply by 12/3
0 0 1/8 i--3/4 -0 1 (A2 j__’ Currentsd rovs - x2 rov/ Multiply by 1
Fiz

¢ Based on the optimality conditions, non of the z-row coefficj
associated with the nonbasic variables s1 and s2 are negati

timal .
SRHITE Hence the last tableau is

X1=3

7

X2 =3/2

£= 91




» The optimal solution for the above example is
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. sl Simplex
Special Cases In
e Method

Degeneracy

® Alternative Optimal

£ -
&y - M’
T 3
[ « ° Unbounded solutions ,
\ Co t[o‘ (am S ’
: fVick  befwem 2 .
Con~ v c, r‘ !Z F
‘,a\fnmct“'}d Desiga Sb
% 500
) S 2 % s foh é’—’d\;‘,"'

Degeneracy

“ The simplex algorithm starts at a corner point and moves to an

adjacent corner point by increasing the value of a non-b-sic variable;
with a positive cost coefficient.

“ Typically, the entering variable xs do

esincrease in valte, and the
objective valye z improves.

" Itis possible that xs does not increase at - This situz* on can occu
when one of the RHS coefficients is 0.




® In this case, the objective valye

and s
exiting variable. This situation | 2itlon does not change, but there is an

s called degeneracy,

Example : Degeneracy

Maximize z=3x1+9x2
Subject to:
X1+4x2<=8
X1+2x2<=4

X1,x2>=0

51




15"')'10 ere e g
: . Example : Degeneracy "% e
oW \>asic \mr'::t’:\_&i.,, e P e o :
o si | §2 | Aus | Ratio |

.
Eh}}

0 prrw
e T T 11771
1

xample : Degeneracy
/WK@

“ Degeneracy implications :

1-  Cycling phenomena

2- Each iteration leads to the same objective function value




Alternative optimal solution

Subject to

When the objective function is parallel to a nonredundant binding
constraint, the objective function can assume the same optimal
value at more than one solution point, thus giving rise to
alternative optimal.

Example: Alternative optima\ solution

Maximize z=2x1+4x2 A

X . (LN

B SN, ..-g\ M ¥
X1+2X2<=5 X1+X2<=4 Xl,x2>—0 A s SS 4/1;
-~

-

N —



Example: Alternative optimal solution

| x1 [x27 ] s1 | s2 IMJ_M"’_J

2 e : R
l I T T T

) T e I el e ;

s2 1 BT o N p)
¥
" [oxx ] x2 [ st [ s2 | RHS | Ratlo |
z S 2 0 10
o flestl 1 0s o 25 8
SLE] o5 [RUETRITAIESEn o
[ x1 | w [ st ] 52 [ Rus [ Ratio |
4 0 0 2 0 10
x2 0 1 1 1 1
x1 1 0 a1 2y s 3N

Example: Alternative optimal solution

“The simplex method determine only the two corner points B (0,2t
and C

(3,1).

Mathematically, we can determine all the points (x1,x2) on that lir
ségment as a nonnegative weighted average points B and C, thus 3
points on the line segment BC are given by:

:'_l'} e e ]



whena=0-=
(X1; =
X2) = (3,1) and Whena=1< (x1,x2)=(0,2 5’

Unbounded solution

® |n some
models, th
» the value of the variables may be increased

indefinitely without vi
solutions i ut violating any of the constraint i
pace in at least one variable flLjRaping Bres the

® Unbound ints t
ed points to the possibility that the model is poorly

constructed . © : .
more nonred Most likely irregularity in such models is that one or
edundant constraints have not been counted for and the,

parameters ( constants) of some constraints may not have been

estimated correctly.

Example: Unbounded solution

Subject to
Maximize 2= 2x1+x2

/
x1—x2<=1()%x}<=40

x1,x2>=0
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Maximize z = 3x1+2x2
N Q\)‘&
vt '
Subject to
+ S

5, AR
3X1+4X2>=12

AN
S 2k i

X1,X2>=0



Example: Infeasible o

olution

= - r 7 14
'Lvlb\_[)J Fp b ;:) rv}f-"(:«)’).B

x1 )
¥ 9 2 = L [R1_ ~|RHs [ratio |
| : v 0 "~ 100 0
Lo W ¢ 1 ) o :
s 4 5 ? : 3
/ x1 XS 52 [R1 [RHs _Jratio k
: :521 e S 100 0 -1200
! 2 1 3 : W 2
R1 3 2 ¢ g : 2
\\ X2 2 1 : : ; s
| R1 5 z 3 v 1 :

L

— W'f/\"
Ase BT
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oMy (39 }’\

M Method

|gorith™ that first finds 3
x alg bles to the pr0b|Em‘

- f the Sim le exin
The M-method is @ version Of 1€ % &, 4 Jariable e
pasic feasible solution *Y g artLP st of course be mOd;f'ed
rt | o at the ConCIUSlon of the

The objective function 0 | |
he artificial varlables are a

to ensure that t
simplex algorithm

M-Method Step> vy

h constraint j

(2}_,&4-

SN "
o Ml.Modify the constraints SO that the RHS of eac _
each constraint with a negative RHS be

nonnegative (This requires that

multiplied by - 1.
quality by any negative number

r that if you multiply an iné
eversed!). After modification, identify

Remembe
the direction of the inequality is

each constraint as <=0r = constraint.
ch inequality constraint to standard form (If constraintiis

»>.Convert ea
and if constraint i is a»

3 < constraint, we add a slack variable Si;
constraint, we subtract an excess variable Ri).

3.Add an artificial variable ai to the constraints identified as > or:

constraints at the end of Step 1. Also add the sign restriction ai >0



S
Mok = 2~ & M [
Min D o5 M\\t

M-Method Steps

4. If the LP is a max prob|
obisoyiein, Problem, add (for each artificia) variable) -MRi to the objective function
oOte a very large positive number =

S.IfthelPisa min
problem, add (for each artificial variable) MRi to the objective function.

6. Solve the transf )
stormed problem by the simplex . Since each artificial variable will be in the

starting basis, all artificial variab| X
! es must be elimi Iy
simplex. iminated from row 0 before beginning the

Nowﬂ(\ln choosing the entering variable, remember that M is a very large positive number!).
use the

objective function ceefficients to approximate the value of M

If all artificial variables are equal to zero in the optimal solution, we have found the optimal

the original problem is infeasible!!!

solution to the original problem. If any artificial variables are positive in the optimal solution,

L
15
Example (M-Method 5teps
: )
= _f\‘}
SNV
~ M\ »—-"- = P Wi
Minimize 7=4x1+x2 \ g B R .
R S
Subject 1o \ o N
i L
3x1+x2=2 i »},/__/. ; pY
-‘/’ . wiof
Ax]43x2>=0 ~ { ) -
‘ 4 3o o
’J’.":l’.;y\' + v —’N\
Y (-/ i
Kl KZ = l} ,




Method Sté ps)

stralnt and x4 252 slack in y,

Example (M-

useXdasa surplus In the second con

To convert the constraint to equations,

third constraint. Thus

Minimize 2=4x14x2

Subject to

3x1+x2=3
4x1+3x2-x3=6
x1+2x2+x4=4
x1, x2, X3, x4 20

\P\J/‘zﬂ)u H

Y L
4 AL ;yuu

U" %
NI il
'\)\ ‘/, A d Ot )//L’ e

" efl-Method Steps

The third equation has its slack variable, x4,
add the artificial variables R1 and R2 in the first two equations and penalize them in the

5 objective function with MR1 +
1 MR2 (because we are minimizing). The resulting LP becomes

T

Minimize z =4x1 +x2 + MR1+ MR2 +0 'I'\} « 0 Xy

but the first and second equations do not. Thus, we

Subject to

3x1+x2+R1=
34x1+3x2-x3 +
R2=6x1+2x2+
x4 =4x1,x2,x3,



M-Method Steps

o

o0
AN
b - Ry . s e
/| Using M=100, the starting simplex tableau is < -
Vacyer &2 A fer
= AV o
e 3 gt
[ x1 | x2_ | x3 I ﬂL—»’L—BL\l x4 rRHS I Rmn__‘c)tm\)\t%
Z -4 -1 0 -100 -100 0 0
R1 3 1 0 1 0 0 3
R2 4 3 -1 0 1 0 6
x4 | 1 2 0 0 0 1 4

61




=3 (-3 -

-Method Steps

This tableau is ready for us to apply the Simplex method.



M-Method Steps

Before proceeding with Simplex
with the rest of the tableay,

X1=x2=x3
The new z-row can be Computed 35 :

New z-row =old Z-TOW+100% Sl-row)+100(52-row)

L Tr—
BT T
O

method Computations,

AT P < il 5 T SR A S

we need to make the z-row consistent

=0, which i
yield the Starting bas|c solution 51=3, 52=6 and $3=4,

M-Method Steps

z 696 399 100 e 2 : 5
2 ] 1 q 1 0 0 3
N . 3 1 0 1 0 6

1 2 0 0 ° ' 4

Iteration #1

[ ] " l X2 f )

RHS [ Ra[ioj

1 ninj
15
4
— i 6 %
od ey
~ N

z 0 167 -100 232 0 0 204
x1 1 0.333333 0 0333333 0 0 1
R2 0 1.666667 -1 -133333 1 0 2
4 0 1666667 0 -0.33333 0 1 3

\—1
QY ¥
Ac \\’,' S
of

(Z-row)- {x1-row) 696
(x1-row)/3
(S2-row)(x1-row)*a

(8310w {x1-ro) 1

TS\
NP k'f
N

N

w
¢ &
12
» o SG“
ke




Qe 2 NI
J\‘, e X\~ ‘5’(3 +5 P;H
¢
\ B il b I ? RN
(ﬂ-fow]h
M-Method Steps
[ xl I S1 ] 52 | X4 [ nus__l__lmln_,
z i -98.4 -100.2 3.6
x1 At 0599973 -0.19998 060004  3.0005
Iteration #3
L lllelxi’SllSlllllgnﬂilBﬂﬂn_J
z 0 ] 0 -986 -100 0.2 3.4 (z-row)-(x3-row)*0.2
x1 1 0 -1.986-05 0.399974  1.98E-05 0.2 0.40004 (x1-row)-{x3-rov/)"0.1998
x2 0 1 0 -0.2 0 0.6 1.8 (x2-row)4{x3-row)”-0.6
—x3 | 0 0 1 1 -1 1 1
— - %

Two-Phase method

Put the problem in equation form and add the necessary artificial variables to the éonstraints
(exactly as in the M-method) to secure a starting basic solution. Next, find a basic solution of
the resulting equations that always minimizes the sum of the artificial variables, regardless of
whether the LP is maximization or minimization. If the minimum value of the sum is positive,
the LP problem has no feasible solution. Otherwise, proceed to Phase Il.

Use the feasible solution from Phase | as a starting basic feasible solution for the original

problem.
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